Electronic and elastic properties of the multiferroic crystals with the Kagome type lattices -\(\text{Mn}_3\text{V}_2\text{O}_8 \) and \(\text{Ni}_3\text{V}_2\text{O}_8 \): First principle calculations

Husnu Koc, Selami Palaz, Amirullah M. Mamedov & Ekmel Ozbay

To cite this article: Husnu Koc, Selami Palaz, Amirullah M. Mamedov & Ekmel Ozbay (2019) Electronic and elastic properties of the multiferroic crystals with the Kagome type lattices -\(\text{Mn}_3\text{V}_2\text{O}_8 \) and \(\text{Ni}_3\text{V}_2\text{O}_8 \): First principle calculations, Ferroelectrics, 544:1, 11-19, DOI: 10.1080/00150193.2019.1598178

To link to this article: https://doi.org/10.1080/00150193.2019.1598178

Published online: 16 Aug 2019.

Submit your article to this journal

Article views: 35

View related articles

View Crossmark data
Electronic and elastic properties of the multiferroic crystals with the Kagome type lattices -Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$: First principle calculations

Husnu Koca, Selami Palazb, Amirullah M. Mamedovc,d, and Ekmel Ozbayc

aFaculty of Science and Letters, Department of Physics, Siirt University, Siirt, Turkey; bFaculty of Sciences, Department of Physics, Harran University, Sanliurfa, Turkey; cNanotechnology Research Center, Bilkent University, Bilkent, Ankara, Turkey; dInternational Scientific Center, Baku State University, Baku, Azerbaijan

ABSTRACT
The electronic, mechanical, and optical properties of the Kagome staircase compounds, Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$, have been investigated using the VASP (Vienna ab-initio Simulation Program) that was developed within the density functional theory (DFT). The spin polarized generalized gradient approximation has been used for modeling exchange-correlation effects. The electronic band structures for both compounds and total and partial density of states corresponding to these band structures have been calculated. Spin up (spin down) E_g values for Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$ compounds are 0.77 eV indirect (3.18 direct) and 1.58 eV indirect (0.62 eV) direct, respectively. The band gaps of both compound is in the d-d character. Bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, anisotropic factors, sound velocity, and Debye temperature were calculated and interpreted.

1. Introduction
The geometrically frustrated multiferroic X$_3$V$_2$O$_8$ (X = Mn, Ni, Co) compounds have a Kagome staircase system with a rich magnetic phase diagram due to a large number of different magnetic interactions. There are four ferroic orders (ferromagnetic, ferroelectric, ferroelastic, and ferrotoroidic) characterized by the formation of domes and exhibiting hysteresis behavior [1]. The multiferroic materials exhibit two or more ferroic orders. The studies on multiferroic Kagome staircase compounds have shown that there is a significant coupling between spin, lattice and charge degree of freedom. Each of the compounds X$_3$V$_2$O$_8$, which is a member of the quasi-isostatic, has slightly different spin -orbit coupling and magnetic anisotropies [2]. The compounds Mn$_3$V$_2$O$_8$ at the studies done up to now crystallize in two modifications depending on the temperature. It exhibits tetragonal structure (Space group I4 $\bar{2}$d) at high temperature while the Mn$_3$V$_2$O$_8$ compound exhibits orthorhombic (Space group Cmca) structure at low temperature [3]. The orthorhombic Mn$_3$V$_2$O$_8$ (MVO) compound is isostructural with

CONTACT Husnu Koc husnu_01_12@hotmail.com
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gfer.
© 2019 Taylor & Francis Group, LLC
Co$_3$V$_2$O$_3$ (CVO) and Ni$_3$V$_2$O$_8$ (NVO) compounds. The X$_3$V$_2$O$_8$ (X = Mn, Ni, Co) compounds consist of layers of edge-sharing X$^{2+}$O$_6$ octahedra separated by V$^{5+}$O$_4$ tetrahedra [2, 4].

For MVO, two separate magnetic phase transitions have been observed for the fields applied in the a, b, c crystallographic directions at 21 K and 15 K, respectively. A phase transition that appears to be specific heat but not seen in magnetization is found for all of the applied field orientations in the crystallographic directions, converging towards the 15 K transition as $H \to 0$. The magnetic behavior of MVO has critical fields for magnetic phase boundaries when the magnetic field is applied perpendicular to the Kagome staircase plane. The magnetic phase diagrams of the MVO compound are distinctly different from those observed for CVO and NVO [5]. According to the neutron scattering data, the CVO compound undergoes transition from paramagnetic state to an incommensurate antiferromagnetic state at 11.3 K. Also, it has been reported that the CVO compound has two incommensurate and one commensurate antiferromagnetic states between 11.3 K and 6.2 K, while transition from the antiferromagnetic state to the weakly ferromagnetic state at 6.2 K. NVO shows a different H-T diagram than the CVO compound. The magnetic properties of the NVO compound at $S = 1$ are less anisotropic. The NVO compound, which is tightly coupled to the magnetic properties, has a spontaneous polarization induced by the incommensurate magnetic order [2].

We discussed in this article the some of the previous studies on X$_3$V$_2$O$_8$ compounds. Javerock et al. [4] experimentally examined the structural characterization and optical properties of the Ni$_3$V$_2$O$_8$ and Co$_3$V$_2$O$_8$ compounds, and performed a comparison of the results of experimentally obtained XES and XAS data and PDOS data obtained with the first principle method. Clemens et al. [3] made a detailed analysis of the magnetic structure of the magnetic phase of the Mn$_3$V$_2$O$_8$ compound with orthorhombic Kagome staircase structure at low temperature by the powder neutron diffraction method, and also performed PDOS calculations of Mn$_3$V$_2$O$_8$, Ni$_3$V$_2$O$_8$ and Co$_3$V$_2$O$_8$ compounds using the DFT + U method. Rai et al. [2] examined the optical and PDOS properties of the Kagome staircase Co$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$ compounds using the LDA + U method. Wang et al. [6] performed band structure and DOS calculations of M$_3$V$_2$O$_8$ (M = Mg, Ni, Zn) compounds with DFT calculations, but did not use spin polarization in calculations. In this study, our purpose is to investigate in detail the structural, electronic and mechanical properties of Mn$_3$V$_2$O$_8$ and Ni$_2$V$_2$O$_8$ compounds by DFT method. As far as we know, the electronic band structures along high symmetry directions and mechanical properties of these compounds have not been reported so far.

2. Method of calculation

In all of our calculations that were performed using the ab-initio total-energy and molecular-dynamics program VASP (Vienna ab-initio simulation program) [7–10] that was developed within the density functional theory (DFT) [11], the exchange-correlation energy function is treated within the a spin polarized GGA (generalized gradient approximation) by the density functional of Perdew et al. [12]. The potentials used for the GGA calculations take into account the 3p63d34s2 valence electrons of each V-,
valence electrons of each Mn-, 3p^63d^84s^2 valence electrons of each Ni-, and 2s^22p^4 valence electrons of each O- atoms. When including a plane-wave basis up to a kinetic-energy cutoff equal to 19.55 Ha for Mn_3V_2O_8 and V_2Ni_3O_8, the properties investigated in this work are well converged. The Brillouin-zone integration was performed using special k points sampled within the Monkhorst-Pack scheme [13]. We found that a mesh of 5 x 5 x 4 k points and 6x6x4 k point for Mn_3V_2O_8 and V_2Ni_3O_8, respectively was required to describe the structural, mechanical, electronic properties. This k-point mesh guarantees a violation of charge neutrality less than 0.008e. Such a low value is a good indicator for an adequate convergence of the calculations.

3. Result and discussion

The Mn_3V_2O_8 and Ni_3V_2O_8 compounds belong to 64 (Cmca) space groups in orthorhombic phase. There are 4 molecules (Z = 4) in the unit cell. In this case, the unit cell contains 52 atoms. The positions of the atoms in the primitive cell of Mn_3V_2O_8 and Ni_3V_2O_8 compounds are given in Table 1. In the calculations, structural optimization calculations are performed using experimental lattice parameters and atomic positions [14, 15]. The total energy values corresponding to different volume values in the volume optimization calculations were determined. The lowest energy state is the most stable state, and the volume corresponding to these energy values is the sought volume value. The volume values obtained for Mn_3V_2O_8 and Ni_3V_2O_8 are 620.95 Å^3 and 562.64 Å^3, respectively. The lattice values obtained as a result of the calculations are in good agreement with the experimental values [14–18] below 1% (see Table 2). The total magnetic moments obtained for Mn_3V_2O_8 and Ni_3V_2O_8 are 30.0 and 12.0, respectively.

Table 1. The experimental atomic positions used in calculations [14, 15].

<table>
<thead>
<tr>
<th>Space grup: Cmca-orthorhombic</th>
<th>Mn_3V_2O_8</th>
<th>Ni_3V_2O_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic positions</td>
<td>x y z</td>
<td>x y z</td>
</tr>
<tr>
<td>Mn_1(Ni_1)</td>
<td>4a</td>
<td>0 0 0</td>
</tr>
<tr>
<td>Mn_2(Ni_2)</td>
<td>8e</td>
<td>0.25 0.13726 0.25</td>
</tr>
<tr>
<td>V</td>
<td>8f</td>
<td>0 0.37981 0.12038</td>
</tr>
<tr>
<td>O_1</td>
<td>8f</td>
<td>0 0.2544 0.2255</td>
</tr>
<tr>
<td>O_2</td>
<td>8f</td>
<td>0 −0.0003 0.2486</td>
</tr>
<tr>
<td>O_3</td>
<td>16g</td>
<td>0.2775 0.1177 0.9959</td>
</tr>
</tbody>
</table>

Table 2. The calculated equilibrium lattice parameters (a, b, and c) together with the experimental values and total magnetic moment (μ in μB/f.u.) for Mn3V2O8 and Ni3V2O8 compounds.

<table>
<thead>
<tr>
<th>Material</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>V_0 (Å^3)</th>
<th>μ (μB/f.u.)</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn_3V_2O_8</td>
<td>6.211</td>
<td>11.848</td>
<td>8.438</td>
<td>620.95</td>
<td>30.0</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td>6.247</td>
<td>11.728</td>
<td>8.491</td>
<td>622.09</td>
<td></td>
<td>Exp. [14]</td>
</tr>
<tr>
<td>Ni_3V_2O_8</td>
<td>5.919</td>
<td>11.490</td>
<td>8.273</td>
<td>562.64</td>
<td>12.0</td>
<td>Present</td>
</tr>
<tr>
<td></td>
<td>5.933</td>
<td>11.385</td>
<td>8.239</td>
<td>556.52</td>
<td></td>
<td>Exp. [15]</td>
</tr>
<tr>
<td></td>
<td>5.930</td>
<td>11.387</td>
<td>8.239</td>
<td>556.34</td>
<td></td>
<td>Exp. [16]</td>
</tr>
<tr>
<td></td>
<td>5.906</td>
<td>11.380</td>
<td>8.240</td>
<td>553.81</td>
<td></td>
<td>Exp. [17]</td>
</tr>
<tr>
<td></td>
<td>5.936</td>
<td>11.420</td>
<td>8.240</td>
<td>558.58</td>
<td></td>
<td>Exp. [18]</td>
</tr>
</tbody>
</table>
The strain-stress technique developed by Page et al. [19], which is compatible with the VASP package program, is used to calculate the elastic constants of structures. There are 9 independent elastic constants in an orthorhombic structure and it is important to obtain these constants for the identification of other elastic data. The elastic constants obtained by using the strain-stress technique are given in Table 3. Unfortunately, there are no experimental and theoretical results to be compared with the obtained results. Whether a compound is mechanically stable is determined by the Born stability condition [20, 21]. The mechanical stability conditions of a compound in the orthorhombic structure are

\[C_{11} + C_{22} - 2C_{12} > 0, \quad (C_{11} + C_{33} - 2C_{13}) > 0, \quad (C_{22} + C_{33} - 2C_{23}) > 0 \]

\[C_{11} > 0, \quad C_{22} > 0, \quad C_{33} > 0, \quad C_{44} > 0, \quad C_{55} > 0, \quad C_{66} = 0 \]

\[(C_{11} + C_{22} + C_{33} + 2C_{12} + 2C_{13} + 2C_{23}) > 0 \]

The elastic constants obtained show that these compounds are mechanically stable. The \(C_{11}, C_{22} \) and \(C_{33} \) constants show resistance to linear compression in the \(a-, b- \) and \(c- \) directions, respectively. The \(C_{11} \) constant at the \(\text{Mn}_3\text{V}_2\text{O}_8 \) compound is smaller than the \(C_{22} \) and \(C_{33} \) constants. In the \(\text{Ni}_3\text{V}_2\text{O}_8 \) compound, the \(C_{22} \) constant is smaller than the \(C_{11} \) and \(C_{33} \) constants. In this case, it is said that there is more compression in the \(a- \) direction in the \(\text{Mn}_3\text{V}_2\text{O}_8 \) compound and in the \(b- \) direction in the \(\text{Ni}_3\text{V}_2\text{O}_8 \) compound.

The bulk modulus, shear modulus, Young modulus and Poisson ratio, which are the elastic modulus of the structures, are calculated according to Voight (V), Reuss (R) and Hill (H) approach [22–24]. The values obtained from the Hill approach are the average of the values obtained from Voight and Reuss approaches. The elastic moduli obtained from the calculations are given in Table 4. The calculated bulk moduli of \(\text{Mn}_3\text{V}_2\text{O}_8 \) and \(\text{Ni}_3\text{V}_2\text{O}_8 \) compounds are 91.3 and 130.8 GPa, respectively. The large bulk modulus indicates that the change in volume versus pressure of the compound is small. Here, the most resistant compound to compression is \(\text{Ni}_3\text{V}_2\text{O}_8 \). The shear modulus is a measure of the resistance of a material against elastic deformation and shear stress. The shear modulus of \(\text{Ni}_3\text{V}_2\text{O}_8 \) is larger than the shear modulus of \(\text{Mn}_3\text{V}_2\text{O}_8 \). If the material is stiff, the Young’s modulus is high. Here, the highest Young’s modulus belongs to the \(\text{Ni}_3\text{V}_2\text{O}_8 \) compound. The Poisson ratio [25–27] gives us information about the bond structure of the solids. The Poisson ratio is 0.1 and 0.25 for covalent and ionic materials, respectively. The Poisson’s ratio for the \(\text{Mn}_3\text{V}_2\text{O}_8 \) compound is 0.29 while the Poisson’s ratio for the \(\text{Ni}_3\text{V}_2\text{O}_8 \) compound is 0.30. Therefore, it is said that the ionic bond is dominant for both compounds. It is determined by the ratio of B/G whether the materials are brittle or ductility. If B/G ratio is less (high) than 1.75, it is said that the material is brittle (ductility) [28, 29]. In this case, both of these compounds are ductile.

The anisotropic factors, Debye temperature and sound velocities [30–32] of these compounds are given in Table 5. The Debye temperature is high for soft materials.

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>(C_{11})</th>
<th>(C_{12})</th>
<th>(C_{13})</th>
<th>(C_{22})</th>
<th>(C_{23})</th>
<th>(C_{33})</th>
<th>(C_{44})</th>
<th>(C_{55})</th>
<th>(C_{66})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Mn}_3\text{V}_2\text{O}_8)</td>
<td>Present</td>
<td>130.2</td>
<td>43.9</td>
<td>70.9</td>
<td>160.0</td>
<td>74.9</td>
<td>167.0</td>
<td>32.7</td>
<td>48.3</td>
<td>58.2</td>
</tr>
<tr>
<td>(\text{Ni}_3\text{V}_2\text{O}_8)</td>
<td>Present</td>
<td>223.2</td>
<td>91.3</td>
<td>99.3</td>
<td>200.8</td>
<td>81.6</td>
<td>212.2</td>
<td>56.2</td>
<td>57.3</td>
<td>63.0</td>
</tr>
</tbody>
</table>

Table 3. The calculated elastic constants (in GPa) for \(\text{Mn}_3\text{V}_2\text{O}_8 \) and \(\text{Ni}_3\text{V}_2\text{O}_8 \) compounds.
small for hard materials. When Debye temperature values are taken into consideration, it can be said that these compounds are hard materials. But the Ni$_3$V$_2$O$_8$ from these compounds is harder than the Mn$_3$V$_2$O$_8$ compound. The shear anisotropic factors of orthorhombic compounds are given as

\[A_1 = \frac{4C_{44}}{C_{11}} + \frac{C_{33} - 2C_{13}}{C_{11}} \] for the \{100\} plane,

\[A_2 = \frac{4C_{55}}{C_{22}} + \frac{C_{33} - 2C_{23}}{C_{22}} \] for the \{010\} plane, and

\[A_3 = \frac{4C_{66}}{C_{11}} + \frac{C_{22} - 2C_{12}}{C_{11}} \] for the \{001\} plane. If the anisotropy factor is less than one, the greatest stiffness is in the \{100\} orientation, while in the case of greatness it is in the \{<111>\} orientation [33]. Among the anisotropy factors of the Mn$_3$V$_2$O$_8$ compound According to calculations made, A_1 is less than 1, A_2 is closer to 1, and A_3 is greater than 1. In the Ni$_3$V$_2$O$_8$ compound, A_1 and A_2 are small than 1, A_3 is closer to 1. The A_{comp} and A_{shear} anisotropy percentage [33] is another way of measuring elastic anisotropy. 0% value indicates elastic isotropic, 100% value indicates maximum elastic anisotropy. The A_{comp} and A_{shear} calculated for the Mn$_3$V$_2$O$_8$ compound are larger than the Ni$_3$V$_2$O$_8$ compound.

The spin up and spin down electronic band curves calculated for the Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$ compounds in the orthorhombic structure and the total and partial density of states corresponding to these band curves are given in Figures 1–3. The spin polarized E_g value obtained for Mn$_3$V$_2$O$_8$ compound is 0.5 eV direct (Γ point). The Eg band gap is in the d-d character. As can be seen from Figures 1a and 2, the calculated spin up E_g values for Mn$_3$V$_2$O$_8$ compound is 0.77 eV indirect, while the maximum valence bands are localized at Γ, the least conduction bands have been localized at almost midpoint between Γ and S. In the valence bands occupied just below the Fermi level (zero eV), there is very weak O p and Mn d hybridization but the Mn d states are dominant. In the unoccupied conduction bands just above the Fermi level, V d states are dominant. The band gap obtained for spin down is $E_g = 3.18$ eV direct (Γ point). Mn$_3$V$_2$O$_8$ compound in spin down exhibits insulator behavior. This is probably due to the fact that the O p states in the valence band energy region near the Fermi level resulting from the spin polarization included in the calculations are pushed further down and the Mn d states are pulled upward. The O p states in the occupied valence band just below the Fermi level are dominate while the V d + Mn d states in the unoccupied conduction bands just above the Fermi level are dominate. The spin polarized $E_g = 0.37$ eV direct (Γ point) obtained for the Mn$_3$V$_2$O$_8$ compound is in agreement with the $E_g = 0.3$ eV value obtained by Rai et al [34]. It is understood that both compounds from the calculated E_g value are narrow semiconductors in nature. As in the case of the Mn$_3$V$_2$O$_8$ compound, the band gap of this compound is also in the d-d character. The obtained spin up E_g

Table 4. The calculated isotropic bulk modulus (B, in GPa), shear modulus (G, in GPa), Young’s modulus (E, in GPa) and Poisson’s ratio for Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$ compounds.

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>B_{is}</th>
<th>B_{sh}</th>
<th>B_{yi}</th>
<th>G_{is}</th>
<th>G_{sh}</th>
<th>G_{yi}</th>
<th>E</th>
<th>v</th>
<th>G/B</th>
<th>B/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$_3$V$_2$O$_8$</td>
<td>Present</td>
<td>89.7</td>
<td>93.0</td>
<td>91.3</td>
<td>43.2</td>
<td>45.7</td>
<td>44.5</td>
<td>114.8</td>
<td>0.29</td>
<td>0.49</td>
<td>2.05</td>
</tr>
<tr>
<td>Ni$_3$V$_2$O$_8$</td>
<td>Present</td>
<td>130.4</td>
<td>131.2</td>
<td>130.8</td>
<td>59.4</td>
<td>59.6</td>
<td>59.5</td>
<td>155.0</td>
<td>0.30</td>
<td>0.46</td>
<td>2.20</td>
</tr>
</tbody>
</table>

Table 5. The calculated anisotropic factors, sound velocities (v_t, v_l, v_m), the Debye temperatures for Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$ compounds.

<table>
<thead>
<tr>
<th>Material</th>
<th>Reference</th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>$A_{comp}(%)$</th>
<th>$A_{shear}(%)$</th>
<th>v_t</th>
<th>v_l</th>
<th>v_m</th>
<th>Θ_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn$_3$V$_2$O$_8$</td>
<td>Present</td>
<td>0.841</td>
<td>1.090</td>
<td>1.151</td>
<td>1.811</td>
<td>2.620</td>
<td>3246</td>
<td>5974</td>
<td>3622</td>
<td>472</td>
</tr>
<tr>
<td>Ni$_3$V$_2$O$_8$</td>
<td>Present</td>
<td>0.949</td>
<td>0.918</td>
<td>1.044</td>
<td>0.283</td>
<td>0.161</td>
<td>3523</td>
<td>6622</td>
<td>3937</td>
<td>530</td>
</tr>
</tbody>
</table>
Figure 1. The calculated electronic band structures for the spin up and spin down of a) Mn$_3$V$_2$O$_8$ and b) Ni$_3$V$_2$O$_8$ compounds.

Figure 2. The spin-polarized total and projected density of states for Mn$_3$V$_2$O$_8$ compound.
for Ni$_3$V$_2$O$_8$ compound (Figure 1b) is 1.58 eV indirect (E$_V$→Γ point, E$_c$→ almost midway between Γ and S) and the obtained spin down Eg is 0.62 eV indirect (E$_V$→ almost midway between Γ and Y, E$_c$→ Γ point). As can be seen in Figure 3, the valence bands at bottom in the -8-0 eV energy range are dominated by O p states, while the valence bands at the top are dominated by the Ni d states. The unoccupied conduction bands d in the lowest energy range are dominated by Ni d + V d states. The Eg (1.58 eV) value we calculated for spin up is in agreement with 1.3 eV value calculated by Wang et al.[6], but the Eg= 0.62 eV value we find for spin down is much smaller than 1.3. Probably, the spin polarization included in the calculations must have pushed further down the O p states in the -8-0 eV energy range, must have pulled upward the Ni d and Ni d + V d states in this valence band and in the lowest conduction band, respectively. When we examine Figures 2 and 3, it is seen that the partial density of states curves obtained for spin up and spin down are different. The different partial density of states curves show antiferromagnetic interaction. The difference of the peaks indicates that all spins are aligned as ferromagnetic.

4. Conclusion

We have investigated the structural, mechanical and electronic properties of Mn$_3$V$_2$O$_8$ and Ni$_3$V$_2$O$_8$ compounds using the spin polarized GGA approximation in the frame of density functional theory. The lattice parameters obtained as a result of the optimization process are in agreement with the experimental values. The calculated electronic band
curves and the total and partial intensity of the states corresponding to these band curves are explained in detail and compared with other theoretical studies. When we consider the value of Young’s modulus, which is a measure of stiffness, we can say that Ni$_3$V$_2$O$_8$ is harder stiffness material than Mn$_3$V$_2$O$_8$. The ionic bond for both compounds from calculated Poisson’s ratio is dominant. Since the B/G ratio is high than 1.75, these compounds are ductile. The Debye temperature is low for soft materials and high for rigid materials. The rigid order of these compounds: are Ni$_3$V$_2$O$_8$ > Mn$_3$V$_2$O$_8$.

Funding

One of the authors (Ekmel Ozbay) acknowledges partial support from the Turkish Academy of Sciences.

References

